Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
ACS Chem Biol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624108

RESUMO

Bufadienolides are a class of steroids with a distinctive α-pyrone ring at C17, mostly produced by toads and consisting of over 100 orthologues. They exhibit potent cardiotonic and antitumor activities and are active ingredients of the traditional Chinese medicine Chansu and Cinobufacini. Direct extraction from toads is costly, and chemical synthesis is difficult, limiting the accessibility of active bufadienolides with diverse modifications and trace content. In this work, based on the transcriptome and genome analyses, using a yeast-based screening platform, we obtained eight cytochrome P450 (CYP) enzymes from toads, which catalyze the hydroxylation of bufalin and resibufogenin at different sites. Moreover, a reported fungal CYP enzyme Sth10 was found functioning in the modification of bufalin and resibufogenin at multiple sites. A total of 15 bufadienolides were produced and structurally identified, of which six were first discovered. All of the compounds were effective in inhibiting the proliferation of tumor cells, especially 19-hydroxy-bufalin (2) and 1ß-hydroxy-bufalin (3), which were generated from bufalin hydroxylation catalyzed by CYP46A35. The catalytic efficiency of CYP46A35 was improved about six times and its substrate diversity was expanded to progesterone and testosterone, the common precursors for steroid drugs, achieving their efficient and site-specific hydroxylation. These findings elucidate the key modification process in the synthesis of bufadienolides by toads and provide an effective way for the synthesis of unavailable bufadienolides with site-specific modification and active potentials.

2.
Org Lett ; 26(8): 1677-1682, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363662

RESUMO

A known polycyclic tetramate macrolactam (aburatubolactam C, 3) and three new ones (aburatubolactams D-F, 4-6, respectively) were isolated from the marine-derived Streptomyces sp. SCSIO 40070. The absolute configuration of 3 was established by X-ray analysis. A combinatorial biosynthetic approach unveiled biosynthetic enzymes dictating the formation of distinct 5/5-type ring systems (such as C7-C14 cyclization by AtlB1 in 5 and C6-C13 cyclization by AtlB2 in 6) in aburatubolactams.


Assuntos
Streptomyces , Ciclização
3.
J Am Chem Soc ; 145(50): 27886-27899, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055632

RESUMO

The antibacterial agents deoxynybomycin (DNM) and nybomycin (NM) have a unique tetracyclic structure featuring an angularly fused 4-oxazoline ring. Here, we report the identification of key enzymes responsible for forming the 4-oxazoline ring in Embleya hyalina NBRC 13850 by comparative bioinformatics analysis of the biosynthetic gene clusters encoding structurally similar natural products DNM, deoxynyboquinone (DNQ), and diazaquinomycins (DAQs). The N-methyltransferase DnmS plays a crucial role in catalyzing the N-dimethylation of a tricyclic precursor prenybomycin to generate NM D; subsequently, the Fe(II)/α-ketoglutarate-dependent dioxygenase (Fe/αKGD) DnmT catalyzes the formation of a 4-oxazoline ring from NM D to produce DNM; finally, a second Fe/αKGD DnmU catalyzes the C-12 hydroxylation of DNM to yield NM. Strikingly, DnmT is shown to display unexpected functions to also catalyze the decomposition of the 4-oxazoline ring and the N-demethylation, thereby converting DNM back to prenybomycin, to putatively serve as a manner to control the intracellular yield of DNM. Structure modeling, site-directed mutagenesis, and quantum mechanics calculations provide mechanistic insights into the DnmT-catalyzed reactions. This work expands our understanding of the functional diversity of Fe/αKGDs in natural product biosynthesis.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Quinolonas , Catálise , Compostos Ferrosos/química
4.
Org Lett ; 25(34): 6346-6351, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37606755

RESUMO

Tetronate antibiotics make up a growing family of natural products with a wide variety of biological activities. Herein, we report four new tetronates kongjuemycins (KJMs, 5-8) from a coral-associated actinomycete Pseudonocardia kongjuensis SCSIO 11457, and the identification and characterization of the KJM biosynthetic gene cluster (kjm) by heterologous expression, comparative genomic analysis, isotope labeling, and gene knockout studies. The biosynthesis of KJMs is demonstrated to harness diverse precursors from primary metabolism for building secondary metabolites.

5.
Angew Chem Int Ed Engl ; 62(27): e202302043, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37076762

RESUMO

Identifying new environmental resistance determinants is significant to combat rising antibiotic resistance. Herein we report the unexpected correlation of a lobophorin (LOB) resistance-related glycosidase KijX with the host-dependent chemical diversity of LOBs, by a process of glycosylation, deglycosylation and reglycosylation. KijX homologues are widespread among bacteria, archaea and fungi, and encode the same glycohydrolytic activity on LOBs. The crystal structure of AcvX (a KijX homologue) shows a similar fold to that of the glycoside hydrolase family 113 and a special negatively charged groove to accommodate and deglycosylate LOBs. Antagonistic assays indicate kijX as a defense weapon of actinomycetes to combat LOB producers in environment, reflecting an elegant coevolution relationship. Our study provides insight into the KijX-related glycosidases as preexisting resistance determinants and represents an example of resistance genes accidentally integrated into natural product assembly.


Assuntos
Actinobacteria , Glicosídeo Hidrolases , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Bactérias/metabolismo , Archaea , Glicosilação , Actinobacteria/metabolismo
6.
J Hazard Mater ; 444(Pt A): 130371, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423453

RESUMO

Environmental estrogen contamination poses severe threat to wildlife and human. Biodegradation is an efficient strategy to remove the wide-spread natural estrogen, while strains suitable for hostile environments and fit for practical application are rare. In this work, Microbacterium hominis SJTG1 was isolated and identified with high degrading efficiency for 17ß-estradiol (E2) and great environment fitness. It could degrade nearly 100% of 10 mg/L E2 in minimal medium in 6 days, and remove 93% of 1 mg/L E2 and 74% of 10 mg/L E2 in the simulated E2-polluted solid soil in 10 days. It maintained stable E2-degrading efficiency in various harsh conditions like non-neutral pH, high salinity, stress of heavy metals and surfactants. Genome mining and comparative genome analysis revealed that there are multiple genes potentially associated with steroid degradation in strain SJTG1. One 3ß/17ß-hydroxysteroid dehydrogenase HSD-G129 induced by E2 catalyzed the 3ß/17ß-dehydrogenation of E2 and other steroids efficiently. The transcription of hsd-G129 gene was negatively regulated by the adjacent LysR-type transcriptional regulator LysR-G128, through specific binding to the conserved site. E2 can release this binding and initiate the degradation process. This work provides an efficient and adaptive E2-degrading strain and promotes the biodegrading mechanism study and actual remediation application.


Assuntos
Estradiol , Estrogênios , Humanos , Microbacterium , Biodegradação Ambiental
7.
Appl Environ Microbiol ; 87(12): e0043521, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33837015

RESUMO

The type VI secretion system (T6SS) is a widespread weapon employed by Gram-negative bacteria for interspecies interaction in complex communities. Analogous to a contractile phage tail, the double-tubular T6SS injects toxic effectors into prokaryotic and eukaryotic neighboring cells. Although effectors dictate T6SS functions, their identities remain elusive in many pathogens. Here, we report the lysozyme-like effector TseP in Aeromonas dhakensis, a waterborne pathogen that can cause severe gastroenteritis and systemic infection. Using secretion, competition, and enzymatic assays, we demonstrate that TseP is a T6SS-dependent effector with cell wall-lysing activities, and TsiP is its cognate immunity protein. Triple deletion of tseP and two known effector genes, tseI and tseC, abolished T6SS-mediated secretion, while complementation with any single effector gene partially restored bacterial killing and Hcp secretion. In contrast to whole-gene deletions, the triple-effector inactivation in the 3effc mutant abolished antibacterial killing but not T6SS secretion. We further demonstrate that the 3effc mutation abolished T6SS-mediated toxicity of SSU to Dictyostelium discoideum amoebae, suggesting that the T6SS physical puncture is nontoxic to eukaryotic cells. These data highlight not only the necessity of possessing functionally diverse effectors for survival in multispecies communities but also that effector inactivation would be an efficient strategy to detoxify the T6SS while preserving its delivery efficiency, converting the T6SS to a platform for protein delivery to a variety of recipient cells. IMPORTANCE Delivery of cargo proteins via protein secretion systems has been shown to be a promising tool in various applications. However, secretion systems are often used by pathogens to cause disease. Thus, strategies are needed to detoxify secretion systems while preserving their efficiency. The T6SS can translocate proteins through physical puncture of target cells without specific surface receptors and can target a broad range of recipients. In this study, we identified a cell wall-lysing effector, and by inactivating it and the other two known effectors, we have built a detoxified T6SS-active strain that may be used for protein delivery to prokaryotic and eukaryotic recipient cells.


Assuntos
Aeromonas , Proteínas de Bactérias , Muramidase , Sistemas de Secreção Tipo VI , Aeromonas/genética , Aeromonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular , Dictyostelium , Escherichia coli/genética , Muramidase/genética , Muramidase/metabolismo , Fagocitose , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
8.
Microorganisms ; 8(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32586023

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are common organic pollutants with great carcinogenic threaten, and metal/PAH-contaminated environments represent one of the most difficult remedial challenges. In this work, Sphingobium yanoikuyae SJTF8 was isolated and identified with great and stable PAH-degrading efficiency even under stress conditions. It could utilize typical PAHs (naphthalene, phenanthrene, and anthracene) and heterocyclic and halogenated aromatic compounds (dibenzothiophene and 9-bromophenanthrene) as the sole carbon source. It could degrade over 98% of 500 mg/L phenanthrene in 4 days, and the cis-3,4-dihydrophenanthrene-3,4-diol was the first-step intermediate. Notably, strain SJTF8 showed great tolerance to heavy metals and acidic pH. Supplements of 0.30 mM of Cu2+, 1.15 mM of Zn2+, and 0.01 mM of Cd2+ had little effect on its cell growth and phenanthrene degradation; phenanthrene of 250 mg/L could still be degraded completely in 48 h. Further, the whole genome sequence of S. yanoikuyae SJTF8 was obtained, and three plasmids were found. The potential genes participating in stress-tolerance and PAH-degradation were annotated and were found mostly distributed in plasmids 1 and 2. Elimination of plasmid 2 resulted in the loss of the PAH-degradation ability. On the basis of genome mining results, the possible degrading pathway and the metabolites of S. yanoikuyae SJTF8 to phenanthrene were predicted.

9.
Appl Microbiol Biotechnol ; 104(3): 1291-1305, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31834439

RESUMO

Bioremediation of environmental estrogens requires microorganisms with stable degradation efficiency and great stress tolerance in complex environments. In this work, Stenotrophomonas maltophilia SJTL3 isolated from wastewater was found to be able to degrade over 90% of 10 µg/mL 17ß-estradiol (E2) in a week and the degradation dynamic was fitted by the first-order kinetic equations. Estrone was the first and major intermediate of E2 biodegradation. Strain SJTL3 exhibited strong tolerance to several adverse conditions like extreme pH (3.0-11.0), high osmolality (2%), co-existing heavy metals (6.25 µg/mL of Cu2+) and surfactants (5 CMC of Tween 80), and retained normal cell vitality and stable E2-degradaing efficiency. In solid soil, strain SJTL3 could remove nearly 100% of 1 µg/mL of E2 after the bacteria inoculation and 8-day culture. As to the contamination of 10 µg/mL E2 in soil, the biodegradation efficiency was about 90%. The further obtainment of the whole genome of strain SJTL3 and genome analysis revealed that this strain contained not only the potential genes responsible for estrogen degradation, but also the genes encoding proteins involved in stress tolerance. This work could promote the estrogen-biodegrading mechanism study and provide insights into the bioremediation application.


Assuntos
Biodegradação Ambiental , Estradiol/metabolismo , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo , Estrogênios/metabolismo , Genoma Bacteriano , Concentração de Íons de Hidrogênio , Cinética , Metais Pesados/metabolismo , Viabilidade Microbiana , Filogenia , Esgotos/microbiologia , Poluentes do Solo/metabolismo , Stenotrophomonas maltophilia/classificação , Estresse Fisiológico
10.
J Hazard Mater ; 385: 121616, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31780289

RESUMO

The efficient bioremediation of estrogen contamination in complex environments is of great concern. Here the strain Stenotrophomonas maltophilia SJTH1 was found with great and stable estrogen-degradation efficiency even under stress environments. The strain could utilize 17ß-estradiol (E2) as a carbon source and degrade 90% of 10 mg/L E2 in a week; estrone (E1) was the first degrading intermediate of E2. Notably, diverse pH conditions (3.0-11.0) and supplements of 4% salinity, 6.25 mg/L of heavy metal (Cd2+ or Cu2+), or 1 CMC of surfactant (Tween 80/ Triton X-100) had little effect on its cell growth and estrogen degradation. The addition of low concentrations of copper and Tween 80 even promoted its E2 degradation. Bioaugmentation of strain SJTH1 into solid clay soil achieved over 80% removal of E2 contamination (10 mg/kg) within two weeks. Further, the whole genome sequence of S. maltophilia SJTH1 was obtained, and a series of potential genes participating in stress-tolerance and estrogen-degradation were predicted. Four dehydrogenases similar to 17ß-hydroxysteroid dehydrogenases (17ß-HSDs) were found to be induced by E2, and the four heterogenous-expressed enzymes could oxidize E2 into E1 efficiently. This work could promote bioremediation appliance potential with microorganisms and biodegradation mechanism study of estrogens in complex real environments.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Estradiol Desidrogenases/isolamento & purificação , Estradiol/metabolismo , Stenotrophomonas maltophilia/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biodegradação Ambiental , Estradiol Desidrogenases/química , Estradiol Desidrogenases/genética , Cinética , Octoxinol/farmacologia , Oxirredução , Polissorbatos/farmacologia , Alinhamento de Sequência , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/enzimologia , Stenotrophomonas maltophilia/genética , Tensoativos/farmacologia
11.
Appl Microbiol Biotechnol ; 103(5): 2413-2425, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30623203

RESUMO

In bacteria, the enzyme catalyzing the transformation of 17ß-estradiol is considered the key enzyme for its metabolism, whose enzymatic activity and regulatory network influence the biodegradation efficiency of this typical estrogen. In this work, a novel 17ß-hydroxysteroid dehydrogenase (17ß-HSD) was characterized from the estrogen-degrading strain Pseudomonas putida SJTE-1, and two regulators were identified. This 17ß-HSD, a member of the short-chain dehydrogenase/reductase (SDR) superfamily, could be induced by 17ß-estradiol and catalyzed the oxidization reaction at the C17 site of 17ß-estradiol efficiently. Its Km value was 0.068 mM, and its Vmax value was 56.26 µmol/min/mg; over 98% of 17ß-estradiol was oxidized into estrone in 5 min, indicating higher efficiency than other reported bacterial 17ß-HSDs. Furthermore, two genes (crgA and oxyR) adjacent to 17ß-hsd were studied which encoded the potential CrgA and OxyR regulators. Overexpression of crgA could enhance the transcription of 17ß-hsd, while that of oxyR resulted in the opposite effect. They could bind to the specific and different sites in the promoter region of 17ß-hsd gene directly, and binding of OxyR could be released by 17ß-estradiol. OxyR repressed the expression of 17ß-hsd by its specific binding to the conserved motif of GATA-N9-TATC, while CrgA activated the expression of this gene through its binding to the motif of T-N11-A. Therefore, this 17ß-HSD transformed 17ß-estradiol efficiently and the two regulators regulated its expression directly. This work could promote the study of the enzymatic mechanism and regulatory network of the estrogen biodegradation pathway in bacteria.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Estrogênios/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Pseudomonas putida/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estradiol/metabolismo , Estrona/metabolismo , Oxirredução , Pseudomonas putida/enzimologia , Transativadores/genética , Fatores de Transcrição/genética
12.
3 Biotech ; 8(10): 433, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30306002

RESUMO

Biodegradation with microorganisms is considered as an efficient strategy to remove the environmental pollutants. In this work, Deinococcus actinosclerus SJTR1 isolated from the wastewater was confirmed with great degradation capability to 17ß-estradiol, one typical estrogen chemical. It could degrade nearly 90% of 17ß-estradiol (10 mg/L) in 5 days and transform it into estrone; its degradation kinetics fitted for the first-order kinetic equation. The whole genome sequence of D. actinosclerus SJTR1 was obtained and annotated, containing one chromosome (3,315,586 bp) and four plasmids (ranging from 17,267 bp to 460,244 bp). A total of 3913 CDSs and 73 RNA genes (including 12 rRNA genes, 50 tRNA genes, and 11 ncRNA genes) were identified in its whole genome sequence. On this basis, a series of potential genes involved in steroid metabolism and stress responses of D. actinosclerus SJTR1 were predicted. It is the first report of Deinococcus strain with the degradation capability to estrogens. This work could enrich the genome sources of the estrogen-degrading strains and promote the degradation mechanism study of 17ß-estradiol in bacteria.

13.
Cell Death Dis ; 8(6): e2837, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569791

RESUMO

Recent evidence indicates that E2F1 transcription factor have pivotal roles in the regulation of cellular processes, and is found to be dysregulated in a variety of cancers. Long non-coding RNAs (lncRNAs) are also reported to exert important effect on tumorigenesis. E2F1 is aberrantly expressed in gastric cancer (GC), and biology functions of E2F1 in GC are controversial. The biological characteristics of E2F1 and correlation between E2F1 and lncRNAs in GC remain to be found. In this study, integrated analysis revealed that E2F1 expression was significantly increased in GC cases and its expression was positively correlated with the poor pathologic stage, large tumor size and poor prognosis. Forced E2F1 expression promotes proliferation, whereas loss of E2F1 function decreased cell proliferation by blocking of cell cycle in GC cells. Mechanistic analyses indicated that E2F1 accelerates GC growth partly through induces TINCR transcription. TINCR could bind to STAU1 (staufen1) protein, and influence CDKN2B mRNA stability and expression, thereby affecting the proliferation of GC cells. Together, our findings suggest that E2F1/TINCR/STAU1/CDKN2B signaling axis contributes to the oncogenic potential of GC and may constitute a potential therapeutic target in this disease.


Assuntos
Adenocarcinoma/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Proteínas do Citoesqueleto/genética , Fator de Transcrição E2F1/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Neoplasias Gástricas/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Proteínas do Citoesqueleto/metabolismo , Progressão da Doença , Fator de Transcrição E2F1/metabolismo , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Prognóstico , Ligação Proteica , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida , Transcrição Gênica
14.
Pharmacogenomics ; 17(3): 187-97, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26786897

RESUMO

AIMS: XIAP is upregulated in chemoresistant epithelial ovarian cancer (EOC). However, the molecular mechanism of this dysregulation remains unclear. MATERIALS & METHODS: The regulation of XIAP by miR-509-3p was investigated by luciferase reporter assay, real-time PCR and immunobloting, and the roles of miR-509-3p in cellular proliferation and apoptosis were accessed through MTT and DAPI assays. RESULTS: miR-509-3p, a downregulated miRNA in chemoresistant EOC, can directly target the XIAP via its 3'UTR. Overexpression of miR-509-3p can not only downregulate the expression of XIAP in ovarian cancer cells but also inhibit the proliferation of EOC cells and increase their sensitivity to cisplatin-induced apoptosis. CONCLUSIONS: Our data suggest that restoring certain dysregulated miRNAs to their normal levels could increase the therapeutic effects of anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Genes Reporter , Células HEK293 , Humanos , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo , Neoplasias Ovarianas , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
15.
Microbes Infect ; 15(13): 887-94, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24141089

RESUMO

Using a recombinant protein N46FdFc that mimics the HIV-1 gp41 N-helix trimer to immunize mice, we identified the first IgM monoclonal antibody 18D3 that specifically bound to the conserved gp41 pocket. Its F(ab')2 fragment potently inhibited HIV-1 Env-mediated cell-cell fusion and neutralized infection by laboratory-adapted and primary HIV-1 isolates with different subtypes and tropism, including the T20-resistant variants. This F(ab')2 fragment can be used to develop a bispecific broad neutralizing monoclonal antibody or HIV-1 inactivator as a novel immunotherapeutic for treatment and prevention of HIV-1 infection.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina M/imunologia , Animais , Infecções por HIV/prevenção & controle , Infecções por HIV/terapia , Humanos , Camundongos
16.
PLoS One ; 7(9): e44874, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970321

RESUMO

During the process of HIV-1 fusion with the target cell, the N-terminal heptad repeat (NHR) of gp41 interacts with the C-terminal heptad repeat (CHR) to form fusogenic six-helix bundle (6-HB) core. We previously identified a crucial residue for 6-HB formation and virus entry--Lys63 (K63) in the C-terminal region of NHR (aa 54-70), which forms a hydrophobic cavity. It can form an important salt bridge with Asp121 (D121) in gp41 CHR. Here, we found another important conserved residue for virus fusion and entry, Arg46 (R46), in the N-terminal region of NHR (aa 35-53), which forms a hydrogen bond with a polar residue, Asn43 (N43), in NHR, as a part of the hydrogen-bond network. R46 can also form a salt bridge with a negatively charged residue, Glu137 (E137), in gp41 CHR. Substitution of R46 with the hydrophobic residue Ala (R46A) or the negatively charged residue Glu (R46E) resulted in disruption of the hydrogen bond network, breakage of the salt bridge and reduction of 6-HB's stability, leading to impairment of viral fusion and decreased inhibition of N36, an NHR peptide. Similarly, CHR peptide C34 with substitution of E137 for Ala (E137A) or Arg (E137R) also exhibited reduced inhibitory activity against HIV-1 infection and HIV-1-mediated cell-to-cell fusion. These results suggest that the positively charged residue R46 and its hydrogen bond network, together with the salt bridge between R46 and E137, are important for viral fusion and entry and may therefore serve as a target for designing novel HIV fusion/entry inhibitors.


Assuntos
Arginina/metabolismo , Proteína gp41 do Envelope de HIV/fisiologia , Fusão de Membrana , Sequência de Aminoácidos , Arginina/química , Dicroísmo Circular , Proteína gp41 do Envelope de HIV/química , Humanos , Peróxido de Hidrogênio , Dados de Sequência Molecular , Sequências Repetitivas de Aminoácidos , Homologia de Sequência de Aminoácidos
17.
Virus Genes ; 45(2): 218-24, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22735937

RESUMO

A xenotropic murine leukemia virus-related virus (XMRV) has been reported to be an emerging pathogen associated with prostate cancer (PC) and chronic fatigue syndrome (CFS). However, recent studies have demonstrated that XMRV is a laboratory-derived virus resulting from genetic recombination between two mouse viral genomes during serial xenograft tissue transplantation. This study describes a phylogenetic analysis that compared XMRV with the ecotropic murine leukemia viruses (E-MLV), xenotropic MLV (X-MLV), and other retroviruses, including HTLV-1 and HIV-1. We found that sequences corresponding to three XMRV structural proteins (Env, Gag, and Pol) exhibited high degrees of homology with X-MLV (>91 %) and E-MLV (67-96 %), but not HTLV-1 (13-16 %) or HIV-1 (10-15 %), indicating that XMRV was derived from X-MLV and/or E-MLV. We then compared the infectivity of XMRV and E-MLV for human and murine lymphocytes, respectively. Results showed that human PBMCs were not susceptible to XMRV infection, suggesting that XMRV exhibits host cell tropism similar to E-MLV that only infects murine PBMCs. These data suggest that it is unlikely that this laboratory-generated retrovirus could cause disease in humans.


Assuntos
DNA Viral/genética , Filogenia , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/classificação , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/patogenicidade , Animais , Análise por Conglomerados , Produtos do Gene env/genética , Produtos do Gene gag/genética , Produtos do Gene pol/genética , Humanos , Leucócitos/virologia , Camundongos , Homologia de Sequência de Aminoácidos , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA